Note on an Additive Characterization of Quadratic Residues Modulo p

نویسندگان

  • Chris Monico
  • Michele Elia
چکیده

It is shown that an even partition A∪B of the set R = {1, 2, . . . , p− 1} of positive residues modulo an odd prime p is the partition into quadratic residues and quadratic non-residues if and only if the elements of A and B satisfy certain additive properties, thus providing a purely additive characterization of the set of quadratic residues. 1 Additive properties of quadratic residues An integer a which is not a multiple of a prime p is called a quadratic residue modulo p if the quadratic equation x = a mod p has a solution. If it has no solution then a is called a quadratic non-residue modulo p. The set R = {1, 2, · · · , p−1} of non-zero residues modulo p is evenly partitioned by the quadratic residue character into two sets, A and B, of quadratic residues and quadratic non-residues, respectively. The property of being a quadratic residue or a quadratic non-residue is inherently a multiplicative property, by its definition in terms of field product operations. The paper shows that the set of quadratic residues modulo p can also be characterized strictly in terms of field addition operations. Specifically, it determines the number of ways in which an element c of R can be written as a sum of two elements from A or two elements from B. The answer depends only on whether c is itself an element of A or B. We then show that this property completely determines the sets A and B, providing a purely additive characterization of the set of quadratic residues. Let p be an odd prime, and let QR and QNR stand for quadratic residue and quadratic non-residue, respectively, in the prime field Fp of p elements. Two generating polynomials for the sets of QR and QNR are defined as

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Application of Modular Hyperbolas to Quadratic Residues

For a prime p > 2 let Zp be the group of invertible elements modulo p, and let Hp denote the modular hyperbola xy ≡ 1 (mod p) where x, y ∈ Z. Following [1] we define Hp = Hp ∩ [1, p− 1], that is, Hp = {(x, y) ∈ Z : xy ≡ 1 (mod p), 1 ≤ x, y ≤ p− 1}. We note that the lines l1 : y = x and l2 : y + x = p are lines of symmetry of Hp. In this note we use these two symmetries to prove the following ba...

متن کامل

Distribution of Residues Modulo p

The distribution of quadratic residues and non-residues modulo p has been of intrigue to the number theorists of the last several decades. Although Gauss’ celebrated Quadratic Reciprocity Law gives a beautiful criterion to decide whether a given number is a quadratic residue modulo p or not, it is still an open problem to find a small upper bound on the least quadratic non-residue mod p as a fu...

متن کامل

Distribution of Quadratic Non-residues Which Are Not Primitive Roots

In this article we study, using elementary and combinatorial methods, the distribution of quadratic non-residues which are not primitive roots modulo p or 2p for an odd prime p and h > 1 an integer. MSC 2000 : 11N69

متن کامل

Ju l 2 00 6 Density of non - residues in short intervals

We show that for any fixed ε > 0, there are numbers δ > 0 and p 0 2 with the following property: for every prime p p 0 , there is an integer p δ < N p 1/(4 √ e)+ε such that the sequence 1, 2,. .. , N contains at least δN quadratic non-residues modulo p. We then apply this result to obtain a new estimate on the smallest quadratic nonresidue in a Beatty sequence.

متن کامل

Graphical patterns in quadratic residues

Plots of quadratic residues display some visual features that are analyzed mathematically in this paper. The graphical patterns of quadratic residues modulo m depend only on the residues of m modulo the lowest positive integers.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006